
ISSN 1560-3547, Regular and Chaotic Dynamics, 2007, Vol. 12, No. 5, pp. 476–489. c© Pleiades Publishing, Ltd., 2007.

150th ANNIVERSARY OF
A. M. LYAPUNOV

Existence and Genericity Problems for Dynamical Systems
with Nonzero Lyapunov Exponents

Ya. Pesin*

Department of Mathematics,
Pennsylvania State University, University Park, 16802, USA

Received February 2, 2007; accepted August 20, 2007

Abstract—This is a survey-type article whose goal is to review some recent results on existence
of hyperbolic dynamical systems with discrete time on compact smooth manifolds and on coexis-
tence of hyperbolic and non-hyperbolic behavior. It also discusses two approaches to the study of
genericity of systems with nonzero Lyapunov exponents.

MSC2000 numbers: 58F09
DOI: 10.1134/S1560354707050024

Key words: Lyapunov exponents, hyperbolicity, genericity, ergodicity

1. INTRODUCTION

Deterministic chaos — a controversial term coined by Yorke — means the appearance of compli-
cated “chaotic” motions in purely deterministic dynamical systems. It recognizes one of the greatest
discoveries in the recent theory of smooth dynamical systems. It is now well-understood that chaotic
behavior is caused by the instability of trajectories that forces them to separate. If the phase space
of the system is compact, the trajectories mix together because there is not enough room to get them
separated. This is one of the main reasons why systems with unstable trajectories on compact phase
spaces exhibit chaotic behavior.

Intuitively, instability means that the behavior of trajectories that start in a small neighborhood
of a given one resembles that of the trajectories in a small neighborhood of a hyperbolic fixed point. This
can be described by saying that the tangent space along the orbit fn(x) admits an invariant splitting

Tfn(x)M = Es(fn(x)) ⊕ Eu(fn(x))

with contraction along the stable subspace Es and expansion along the unstable subspace Eu.
This is the case of complete hyperbolicity.

A more general version of partial hyperbolicity requires that there exists an invariant splitting
of the tangent space along the orbit

Tfn(x)M = Es(fn(x)) ⊕ Ec(fn(x)) ⊕ Eu(fn(x))

with contraction along Es, expansion along Eu and contraction and/or expansion with smaller rates
along the central subspace Ec (this allows the case when there is no contraction and/or expansion
along Ec, e.g., df |Ec(x) is an isometry for every x ∈ M ).

Further, one should distinguish uniform and nonuniform hyperbolicity. In the former case
the asymptotic rates of contraction and expansion along invariant subspaces are uniformly bounded
in x on an invariant compact subset in the phase space (in particular on the whole phase space).
In the latter case the set of hyperbolic trajectories has full measure with respect to some f-invariant
measure ν and the asymptotic rates of contraction and expansion along invariant subspaces depend
on x. Thus nonuniformly hyperbolicity is a property of the system as well as of an invariant measure.

In studying chaotic systems one should separate the following two cases:
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EXISTENCE AND GENERICITY PROBLEMS FOR DYNAMICAL SYSTEMS 477

1. Conservative systems: a diffeomorphism f of a compact smooth Riemannian manifold M pre-
serving volume or a smooth measure ν (i.e., a measure, which is equivalent to volume);

2. Dissipative systems: a diffeomorphism f of a compact smooth Riemannian manifold M possess-
ing a trapping region, i.e., an open set U such that f(U) ⊂ U ; the set Λ =

⋂
n�0 fn(U) is a said

to be a (strange) attractor for f .

In this paper we will only deal with the case of conservative systems with discrete time although
many of the results presented here can be extended to systems with continuous time as well as to some
dissipative systems.

In what follows we shall formally introduce all the known forms of hyperbolicity (complete and partial
as well as uniform and nonuniform), describe some of the ergodic properties of hyperbolic dynamical
systems and present some recent results on existence of hyperbolic systems on compact spaces.
For nonuniformly completely hyperbolic systems we will discuss a very interesting phenomenon of co-
existence in somewhat strong sense of hyperbolic and non-hyperbolic behavior.

We stress that nonuniform hyperbolicity can be expressed in terms of the Lyapunov exponent
of the system — an important characteristic of the system first introduced by Lyapunov. It can
easily be computed while studying the system numerically. Thus nonuniform hyperbolicity provides
a rigorous mathematical basis for the study of chaotic motions in deterministic systems. In fact,
measuring Lyapunov exponents is one of the central issues in studying chaotic dynamical systems —
they are intrinsic observables that allow one to quantify a number of different physical properties
such as sensitivity to initial conditions, local entropy production and the dimension of the attractor
(see [1]).

One of the main goals of this paper is to outline two approaches to the study of genericity of hyperbolic
dynamical systems. The first one is to find out whether these systems form a “large” set in the space of all
Cr, r � 1, diffeomorphisms preserving a given smooth measure. The other one is to answer the question
whether a given one-parameter family of dynamical systems has a large set of parameters corresponding
to hyperbolic systems.

Uniform (complete or partial) hyperbolicity survives under small perturbation of the system
and therefore genericity of uniformly hyperbolic systems effectively amounts to their presence on a given
compact space. This may not be the case: many compact manifolds do not carry uniformly hyperbolic
systems. On the other hand, the presence of dynamical systems with nonzero Lyapunov exponents
imposes no restrictions on the topology of the phase space and in fact, they can be constructed on any
compact manifold (of dimension � 2). This makes the genericity problem for nonuniformly hyperbolic
systems especially interesting.

2. UNIFORM HYPERBOLICITY

Instability of trajectories can be described by various forms of the hyperbolicity conditions. We be-
gin with the strongest version known as uniform hyperbolicity.

2.1. Uniform Complete Hyperbolicity

See [2, 3] and also [4]. A diffeomorphism f of a compact Riemannian manifold M is said to be uni-
formly completely hyperbolic or to be Anosov if for each x ∈ M there are a decomposition of the tan-
gent bundle TM = Es ⊕ Eu into two continuous df-invariant subbundles and constants C > 0,
0 < λ < 1 < µ such that for x ∈ M and n � 0,

1. ‖dfnv‖ � Cλn‖v‖ for any v ∈ Es(x);

2. ‖df−nv‖ � Cµ−n‖v‖ for any v ∈ Eu(x).1)

1)The requirement that the subbundles Es and Eu are continuous can be dropped as continuity actually follows from uniform
estimates (1) and (2).
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The subspaces Es(x) and Eu(x) are called stable and unstable subspaces at x respectively.
They form two continuous subbundles (distributions) of the tangent bundle (one can show that indeed,
they are Hölder continuous). Each of these subbundles is integrable to a continuous foliation of M . Thus
we obtain two transversal stable W s and unstable W u foliations of M . By the classical Hadamard–
Perron theorem, the leaves of these foliations can be characterized as follows

W s(x) = {y ∈ M : d(fn(y), fn(x)) → 0, n → ∞},
W u(x) = {y ∈ M : d(fn(y), fn(x)) → 0, n → −∞}

(the convergence in fact, is exponential). Let us stress that the unstable leaf W u(x) at the point x is
defined as being the stable leaf at x for the inverse map f−1. 2) However, if the two points y, z ∈ W u(x)
are moved forward by the dynamics, the distance between them (measured in the intrinsic metric
in W u(x)) increases exponentially to infinity.

The stable foliation satisfies the crucial absolute continuity property, i.e., given a set of positive
volume, its intersection with almost every leaf of the foliation has positive leaf-volume (and the unstable
foliation satisfies a similar property). 3)

2.2. Uniform Partial Hyperbolicity
See [5, 6] and also [7]. One can obtain a weaker version of uniform hyperbolicity by relaxing the re-

quirement that stable and unstable subbundles generate the whole tangent bundle. A diffeomorphism f
of a compact Riemannian manifold M is said to be uniformly partially hyperbolic if for each x ∈ M
there are a decomposition of the tangent bundle TM = Es ⊕Ec ⊕Eu into three continuous df-invariant
subbundles and numbers C > 0 and 0 < λ < λ′ � 1 � µ′ < µ such that for every x ∈ M and n � 0,

1. ‖dfnv‖ � Cλn‖v‖ for v ∈ Es(x);

2. C−1(λ′)n‖v‖ � ‖dfnv‖ � C(µ′)n‖v‖ for v ∈ Ec(x);

3. ‖df−nv‖ � Cµ−n‖v‖ for v ∈ Eu(x).

The subspaces Es(x), Ec(x) and Eu(x) are called stable, central and unstable subspaces at x
respectively. They form three continuous subbundles (distributions) of the tangent bundle (one can show
that indeed, they are Hölder continuous). The subbundles Es(x) and Eu(x) are integrable to continuous
transversal foliations, W s and W u of M called stable and unstable foliations. The central distribution
may not be integrable. The stable and unstable foliations satisfy the absolute continuity property.

3. UNIFORM HYPERBOLICITY:
EXAMPLES, EXISTENCE, ERGODIC PROPERTIES AND GENERICITY

3.1. Anosov Maps
A simple example of an Anosov map is a linear hyperbolic automorphism A of an n-dimensional

torus T n, i.e., a linear map of R
n, given by a matrix A with integer entries and such that detA = 1

and the eigenvalues λi satisfy |λi| �= 1.
The existence of an Anosov diffeomorphism on a compact smooth manifold imposes strong require-

ments on the topology of the manifold: there are two continuous nonsingular foliations, the action
on the fundamental group is hyperbolic, etc. In particular, there is no Anosov diffeomorphism on the
2-sphere. Anosov diffeomorphisms are known to exist on tori (see the above example) and factors of
compact nilpotent Lie groups (see [7]). It is conjectured that there is no Anosov diffeomorphism on any
other manifold.

Anosov diffeomorphisms of class C1 form an open set in the space Diff1(M) (or Diff1(M,ν) where ν
is an invariant smooth measure on M ). In particular, there is an open set of Anosov C1 maps on any
torus.

Anosov diffeomorphisms are “chaotic”. More precisely, the following statement holds.

2)Similarly, the unstable subspace Eu(x) at x is defined as being the stable subspace at x for the inverse map f−1.
3)Indeed, the stable foliation satisfies a stronger version of the absolute continuity property: the conditional measure

generated by volume on almost every leaf of the foliation is equivalent to the leaf-volume with bounded and strictly positive
density.
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Theorem 1 (see [4]). An Anosov diffeomorphism f of a compact smooth connected Riemannian
manifold, preserving a smooth measure ν, is ergodic. If in addition, f is topologically mixing (i.e.,
for any nonempty open sets U and V there exists N > 0 such that fn(U) ∩ V �= ∅ for any n � N)
then f is a Bernoulli automorphism.

Chaotic behavior associated with Anosov maps is robust. More precisely, an Anosov diffeomor-
phism f of a compact smooth connected Riemannian manifold, preserving a smooth measure ν,
is stably ergodic, i.e., any sufficiently small perturbation of f , preserving ν, is ergodic.

3.2. Partially Hyperbolic Maps

A simple example of a partially hyperbolic map is the direct product of the identity map (of some
manifold) and a linear hyperbolic automorphism of a torus.

The presence of a partially hyperbolic diffeomorphism on a compact smooth manifold imposes some
requirements on the topology of the manifold.

Theorem 2 (see [8]). A compact 3-dimensional manifold, whose fundamental group is finite,
does not carry a partially hyperbolic diffeomorphism whose central distribution is integrable;
in particular, there is no partially hyperbolic diffeomorphisms on the 3-sphere.

Partially hyperbolic diffeomorphisms of class C1 form an open set in the space Diff1(M) (or Diff1(M,ν)
where ν is an invariant smooth measure).

Partially hyperbolic maps may not be ergodic as the above example shows. To guarantee ergodicity
we impose some restrictions on the system.

We say that two points x, y ∈ M are accessible if there exists a collection of points z1, . . . , zn such
that x = z1, y = zn and zk ∈ W s(zk−1) or zk ∈ W u(zk−1) for k = 2, . . . , n. Accessibility is a transitive
relation. We say that f has the accessibility property if there is only one accessibility class, i.e., any two
points are accessible.

We say that f has the essential accessibility property if any accessibility class has either measure
one or zero (with respect to an invariant smooth measure on M ).

We say that f is center bunched if λ < µ′µ−1 or if µ′ > λ′λ−1.

Theorem 3 (see [9]). Let f be a C2 partially hyperbolic diffeomorphism of a compact smooth
Riemannian manifold M preserving a smooth measure. Assume that f is (essentially) accessible
and center bunched. Then f is ergodic and in fact, has the K-property.

Let f be a partially hyperbolic diffeomorphism, which preserves a smooth measure ν and has
the accessibility property. Any sufficiently small perturbation g of f is partially hyperbolic but it is not
known whether g has the accessibility property. If this is the case then by Theorem 3, g is ergodic
(provided g preserves ν), since center-bunching is an open property. We obtain the following result
establishing robustness of chaotic behavior associated with partially hyperbolic systems. We say that
a partially hyperbolic C2 diffeomorphism f is stably (essentially) accessible if so is any sufficiently
small (in the C1 topology) C2 perturbation g of f (assuming g preserves ν).

Theorem 4. Let f be a C2 partially hyperbolic diffeomorphism of a compact smooth Riemannian
manifold M preserving a smooth measure ν. Assume that f is stably (essentially) accessible
and center bunched. Then f is stably ergodic (indeed, stably a K-diffeomorphism).

A different approach to study ergodicity of partially hyperbolic maps is suggested in [10] and is based
on examining Lyapunov exponents in the central direction (see the definition of the Lyapunov exponent
below). This is the case of mixed hyperbolicity — a combination of uniform partial hyperbolicity
and nonzero Lyapunov exponents in the central subspace.

Theorem 5 (see [10]). Let f be a C2 partially hyperbolic diffeomorphism a of compact smooth
Riemannian manifold M preserving a smooth measure ν. Assume that f satisfies the following
properies:

1. it is (essentially) accessible;
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2. there exists an invariant set A of positive ν-measure such that the Lyapunov expo-
nents χ(x, v) is negative for all x ∈ A and v ∈ Ec(x) (or χ(x, v) is positive for all x ∈ A
and v ∈ Ec(x)).

Then f is ergodic and in fact, is Bernoulli. Furthermore, the map f is stably ergodic (indeed,
stably Bernoulli).

A similar result has been recently obtained in [11] in the case when dim Ec = 2 and the Lyapunov
exponents in the central subspace are nonzero (and of different signs).

4. NONUNIFORM HYPERBOLICITY

We describe a weaker version of hyperbolicity. One of its main features is that hyperbolic trajectories
form a subset of full measure (with respect to an f-invariant smooth measure) in the manifold
but not every trajectory is hyperbolic.

4.1. Nonuniform Complete Hyperbolicity

See [12, 13] and also [14, 15]. Let f be a C1 diffeomorphism of a compact smooth Riemannian
manifold M preserving a smooth measure ν. We say that f is nonuniformly completely hyperbolic
if for ν-almost every x ∈ M one can find a decomposition of the tangent space at x

TxM = Es(x) ⊕ Eu(x)

and if there are positive Borel functions λ(x) and µ(x) and for every ε0 > 0 positive Borel functions ε(x),
C(x) and K(x) on M such that for ν-almost every x ∈ M ,

1. the subspaces Es(x) and Eu(x) depend measurably on x and are invariant under the differential
df , i.e., dfEs(x) = Es(f(x)) and dfEu(x) = Eu(f(x));

2. 0 < λ(x)eε(x) < 1 < µ(x)e−ε(x) and the functions λ, µ and ε are invariant under f , i.e.,

λ(f(x)) = λ(x), µ(f(x)) = µ(x), ε(f(x)) = ε(x);

3. ‖dfnv‖ � C(x)λ(x)n‖v‖ for v ∈ Es(x) and n � 0;

4. ‖df−nv‖ � C(x)µ(x)−n‖v‖ for v ∈ Eu(x) and n � 0;

5. the angle ∠(Es(x), Eu(x)) � K(x);

6. for every m ∈ Z,

C(fm(x)) � eε(x)|m|C(x), K(fm(x)) � e−ε(x)|m|K(x).

The last property means that the estimates in (3)–(5) can deteriorate but with subexponential rate.
The subspaces Es(x) and Eu(x) are called stable and unstable subspaces at x respectively. Unlike

the case of uniform hyperbolicity they are only defined on a set of full measure and depend measurably
on x. As in the case of uniform hyperbolicity the unstable subspace Eu(x) at a point x is defined as being
the stable subspace at x for the inverse map f−1.

One can construct, for almost every x ∈ M , the global stable and unstable manifolds at x, W s(x)
and W u(x). They form “measurable” foliations of M , which are transversal to each other. The unstable
leaf W u(x) at a point x is defined as being the stable leaf at x for the inverse map f−1. However, unlike the
global unstable leaves for uniformly hyperbolic systems, there is no reason to assume that the size of the
unstable leaf actually increases when the leaf is moved forward by the dynamics — it is an open problem
whether there is a nonuniformly hyperbolic system which possesses an unstable leaf of “bounded size”.
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4.2. Nonuniform Partial Hyperbolicity

See [12] and also [15]. Let f be a C2 diffeomorphism of a compact smooth Riemannian manifold M
preserving a smooth measure ν. We say that f is is nonuniformly partially hyperbolic if for ν-almost
every x ∈ M one can find a decomposition of the tangent space at x

TxM = Es(x) ⊕ Ec(x) ⊕ Eu(x)

and if there are positive Borel functions λ(x), λ′(x), µ(x) and µ′(x) and for every ε0 > 0 positive Borel
functions ε(x), C(x) and K(x) on M such that for ν-almost every x ∈ M ,

1. the subspaces Es(x), Ec(x) and Eu(x) depend measurably on x and are invariant under the dif-
ferential df , i.e., dfEs(x) = Es(f(x)), dfEc(x) = Ec(f(x)) and dfEu(x) = Eu(f(x));

2. the functions λ, λ′, µ′, µ and ε are invariant under f , i.e.,

λ(f(x)) = λ(x), λ′(f(x)) = λ′(x), µ′(f(x)) = µ′(x),

µ(f(x)) = µ(x), ε(f(x)) = ε(x)

and they satisfy

0 < λ(x)eε(x) < λ′(x) � 1 � µ′(x) < µ(x)e−ε(x);

3. ‖dfnv‖ � C(x)λ(x)n‖v‖ for v ∈ Es(x);

4. C(x)−1(λ′(x))n‖v‖ � ‖dfnv‖ � C(x)(µ′(x))n‖v‖ for v ∈ Ec(x);

5. ‖df−nv‖ � C(x)µ(x)−n‖v‖ for v ∈ Eu(x);

6. the angles satisfy

∠(Ec(x), Es(x)) � K(x), ∠(Ec(x), Eu(x)) � K(x),
∠(Es(x), Eu(x)) � K(x);

7. for every m ∈ Z,

C(fm(x)) � eε(x)|m|C(x), K(fm(x)) � e−ε(x)|m|K(x).

The last property means that the estimates in (3)–(6) can deteriorate but with subexponential rate.

The subspaces Es(x), Ec(x) and Eu(x) are called stable, central and unstable subspaces at x
respectively. They are defined on a set of full measure and depend Borel measurably on x.

4.3. Nonuniform Hyperbolicity and Lyapunov Exponents

Nonuniform hyperbolicity can be characterized in more “practical” terms using the Lyapunov
exponent of the system. The latter was introduced by Lyapunov in his seminal work on stability
of solutions of ordinary differential equations (see [16]; some crucial results in this direction were also
obtained by Perron, see [17, 18]; a good account of their work in this direction can be found in [19]).
An adaptation of the notion of the Lyapunov exponent to dynamical systems was made by Oseledets [20],
by Pesin [12, 21] and by Ruelle [22, 23] (see also books [14, 15] for a contemporary account of this
work).
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Recall that given a diffeomorphism f of a smooth Riemannian manifold M , the Lyapunov exponent
of f at a point x ∈ M of a vector v ∈ TxM is defined by the formula

χ(x, v) = lim sup
n→∞

1
n

log ‖dfn
x v‖.

This means that for every sufficiently small ε > 0 and any sufficiently large n,

‖dfn
x v‖ ∼ exp(χ(x, v) ± ε)n.

Therefore if χ(x, v) > 0 the differential asymptotically expands v with an exponential rate and if
χ(x, v) < 0 the differential asymptotically contracts v with an exponential rate. In other words the
subspaces

Es(x) = {v ∈ TxM : χ(x, v) < 0}, Eu(x) = {v ∈ TxM : χ(x, v) > 0}
can be viewed as candidates for stable and unstable subspaces at x. Whether they are actually stable
and unstable subspaces at x depends on a subtle condition, called Lyapunov–Perron regularity, that
the differential df must satisfy along the trajectory of x (see [12] and also [14, 15]). Regularity is a crucial
notion in the stability theory originated in works of Lyapunov [16] and Perron [17, 18]. The celebrated
Multiplicative ergodic theorem of Oseledets [20] claims that almost every point with respect to an
invariant Borel measure is Lyapunov–Perron regular.

It follows that nonuniform complete hyperbolicity is equivalent to the fact that the Lyapunov exponent
is not equal to zero for every vector v and almost every point x with respect to an invariant smooth
measure ν (see [12, 20] and also [15, 24, 25]); in this case ν is called a hyperbolic measure. Similarly,
nonuniform partial hyperbolicity is equivalent to the fact that the Lyapunov exponent χ(x, v) is not equal
to zero for some vector(s) v and almost every point x with respect to an invariant smooth measure ν
(see [12] and also [15]).

4.4. Relations Between Nonuniform and Uniform Versions of Hyperbolicity

There are three principle relations between nonuniform and uniform versions of hyperbolicity.
For the sake of discussion we consider the case of a C1+α diffeomorphism f of a compact manifold
M preserving a smooth measure ν and we only discuss the complete version of hyperbolicity. The first
of these relations provides an increasing sequence of compact (not invariant) subsets that are uniformly
hyperbolic for f and exhaust M almost surely.. The second one gives a sequence of invariant measures
supported on compact invariant uniformly hyperbolic sets that exhaust the metric entropy hν(f). Finally,
the last relation describes “Anosov rigidity”: if f is nonuniformly hyperbolic on a compact invariant
subset of M , then this subset is a uniformly hyperbolic set for f . More precise description of these three
relations is as follows.

1. See [12] (and also [14, 15]). The sets

R̃n :=
{

x ∈ M : λ(x) � 1 − 1
n

< 1 +
1
n

� µ(x), C(x) � n, K(x) � 1
n

}

, n � 1

are nested and exhaust the whole M up to a set of zero measure, i.e., R̃n ⊂ R̃n+1 and
⋃

n�1 R̃n =
M (mod 0). These sets are uniformly hyperbolic for f , i.e. the estimates (3)–(5) in the definition
of nonuniform hyperbolicity are uniform on R̃n. The invariant decomposition of the tangent space into

stable and unstable subspaces can be extended from R̃n to its closure Rn = R̃n. The sets Rn are nested
and exhaust the whole M up to a set of zero measure. They are uniformly hyperbolic sets for f , compact
but not f-invariant.

2. See [26] (and also [15]). Assume that the measure ν is ergodic and that hν(f) > 0. Then there
is a sequence of f-invariant measures νn supported on uniformly hyperbolic sets Λn (horseshoes) such
that νn → ν as n → ∞ in the weak∗ topology and hνn(f) → hν(f).

3. See [27]. We present two results. In what follows K ⊂ M is a compact f-invariant subset for a C1

diffeomorphism of a compact manifold M .
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1. Assume that the Lyapunov exponent χ(x, v) is nonzero for every x ∈ K and v ∈ TxM . Then
there exists ε > 0 such that |χ(x, v)| > ε for x ∈ K and v ∈ TxM . Moreover, the nonwandering
set NW (K) of K is uniformly hyperbolic.

2. Let K ⊂ M be a compact f-invariant set that admits two transverse f-invariant Baire cone
families Cx and Dx on TM |K such that for every x ∈ K we have χ(x, v) > 0 for v ∈ Cx

and χ(x, v) < 0 for v ∈ Dx. 4) Then K is a uniformly hyperbolic set for f . In particular, if K = M ,
then f is an Anosov diffeomorphism.

5. NONUNIFORM HYPERBOLICITY: EXISTENCE, ERGODIC PROPERTIES, EXAMPLES
The first example of a dynamical systems with continuous time was constructed in [28]. We shall

describe an example due to Katok [29] (see also [14, 15]) of a diffeomorphism of the 2-torus with nonzero
Lyapunov exponents, which is not an Anosov map. Starting with the hyperbolic toral automorphism A
given by the matrix

A =

⎛

⎝ 2 1

1 1

⎞

⎠,

consider the disk Dr centered at zero of radius r. Let (s1, s2) be the coordinates in Dr obtained from
the eigendirections of A. The map A is the time-1 map of the local flow in Dr generated by the system
of ordinary differential equations:

ṡ1 = s1 log λ, ṡ2 = −s2 log λ.

We obtain the desired map by slowing down A near the origin.
Fix small r1 < r0 and consider the time-1 map g generated by the system of ordinary differential

equations in Dr1 :

ṡ1 = s1ψ(s1
2 + s2

2) log λ,

ṡ2 = −s2ψ(s1
2 + s2

2) log λ,

where ψ is a real-valued function on [0, 1] satisfying:

1. ψ is a C∞ function except for the origin;

2. ψ(0) = 0 and ψ(u) = 1 for u � r0 where 0 < r0 < 1;

3. ψ′(u) > 0 for every 0 < u < r0;

4.
∫ 1
0

du
ψ(u) < ∞.

We have that g(Dr2) ⊂ Dr1 for some r2 < r1 and that g is of class C∞ in Dr1 \ {0} and coincides with A
in some neighborhood of the boundary ∂Dr1 .

The map G, given as G(x) = g(x) if x ∈ Dr1 and G(x) = A(x) otherwise, defines a homeomorphism
of the torus, which is a C∞ diffeomorphism everywhere except for the origin. The map G has the following
properties:

(G1) G has nonzero Lyapunov exponents almost everywhere;

(G2) G preserves a probability measure dν̃ = κ−1
0 κdν where ν is area, the density κ is a positive C∞

function and it is infinite at 0 and κ0 > 0 is the normalizing factor.

4)A cone Cx ⊂ TxM of angle α(x) � 0 around a subspace E(x) is the set of vectors v ∈ TxM such that ∠(v, E(x)) � θ(x).
Two cones Cx and Dx are transverse if there are subspaces L1 ⊂ Cx and L2 ⊂ Dx such that L1 and L2 are trans-
verse. A family of cones Cx is continuous if the defining subspaces E(x) and angles α(x) depend continuously on x
and it is f-invariant if df(Cx) ⊆ Cf(x). A function on a separable metric space is a Baire function of class 1 or 0 if it
is the pointwise limit of continuous functions.
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We change the coordinate system in the torus by a map φ such that the map f = φ ◦ G ◦ φ−1 preserves
area. Set

φ(s1, s2) =
1

√
κ0τ

(∫ τ

0

du

ψ(u)

)1/2

(s1, s2)

(τ = s1
2 + s2

2) in Dr1 and φ is identity otherwise. One can show that f is an area-preserving C∞

diffeomorphism with nonzero Lyapunov exponents almost everywhere. It is called the Katok map.
This map is a basic element in constructing volume-preserving C∞ diffeomorphisms with nonzero

Lyapunov exponents on any manifold. More precisely, the following statement holds.

Theorem 6 (see [30]). Any compact smooth Riemannian manifold M of dimension � 2 admits
a C∞ volume-preserving diffeomorphism f , which has nonzero Lyapunov exponents almost
everywhere and is Bernoulli.

A similar result for dynamical systems with continuous time was obtained in [31].
Nonuniformly completely hyperbolic dynamical systems are chaotic.

Theorem 7 (see [12] and also [14, 15]). Let f be a C1+α diffeomorphism of a compact smooth
Riemannian manifold M and ν an f-invariant smooth hyperbolic measure on M . Then

1. M =
⋃

i�0 Λi, Λi ∩ Λj = ∅;

2. ν(Λ0) = 0 and ν(Λi) > 0 for i > 0;

3. f |Λi is ergodic for i > 0;

4. for each i > 0 there is ni > 0 such that Λi =
⋃ni

j=1 Λij where Λij ∩ Λik = ∅ if j �= k, f(Λij) =
Λi,j+1, for 1 � j < ni, fni(Λi1) = Λi1 and fni|Λi1 is Bernoulli.

There is an example of a nonuniformly completely hyperbolic C∞ volume-preserving diffeomorphism
of the 3-torus, which has countably (not finitely) many ergodic components (see [32]). This example
shows that the above theorem cannot be improved.

Recall that for every x ∈ M , the Lyapunov exponent χ(x, ·) can take on finitely many values

χ1(x) � · · · � χp(x), p = dim M,

where the functions χi(x) are Borel measurable and invariant under the map f . If ν is a hyperbolic
measure for f then χi(x) �= 0 for any i = 1, . . . , p. The following result describes another important
property of hyperbolic smooth measures.

Theorem 8 (see [12] and also [14, 15]). Let f be a C1+α diffeomorphism of a compact smooth
Riemannian manifold M and ν an f-invariant smooth hyperbolic measure on M . Then the metric
entropy of hν(f) can be computed by the following formula:

hν(f) =
∫

M

∑

i: χi(x)>0

χi(x) dν.

6. NONUNIFORM HYPERBOLICITY: GENERICITY

It is one of the most challenging problems in the theory of smooth dynamical systems to estab-
lish genericity of dynamical systems with nonzero Lyapunov exponents. Theorem 6 can be viewed
as an important first step in studying the genericity problem. In this regard we consider the following
two conjectures.

Conjecture 1. Let f be a C1+α volume-preserving diffeomorphism of a compact smooth Rieman-
nian manifold M (possibly with some zero Lyapunov exponents). Then arbitrarily close to f

in Diff1+α(M,m) (where m is volume) there is a diffeomorphism g, which has nonzero Lyapunov
exponents on a set of positive volume.
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Conjecture 2. Let f be a C1+α volume-preserving diffeomorphism of a compact smooth Rie-
mannian manifold M with nonzero Lyapunov exponents. Then there exists a neighbor-
hood U ⊂ Diff1+α(M,m) of f and a residual set B ⊂ U such that every g ∈ B has nonzero
Lyapunov exponents on a set of positive volume.

The requirement that f is of class of smoothness C1+α is crucial due to the following result.

Theorem 9 (see [33–36]). Aside from Anosov diffeomorphisms a C1 generic system on a com-
pact surface has zero Lyapunov exponents.

In order to make a progress in solving the above conjectures one can try first to analyze small
perturbations of the Katok map of the 2-torus described above. Let us point out that any gentle
perturbation of this map (i.e., a perturbation that is supported outside the critical fixed point) has nonzero
Lyapunov exponents almost everywhere.

7. COEXISTENCE PHENOMENA

The presence of elliptic behavior is a persistent obstruction to nonuniform hyperbolicity. Coexistence
of elliptic islands and “chaotic sea” — an open (mod 0) set on which the system has nonzero Lyapunov
exponents and is ergodic — is one of the most interesting phenomena in dynamical systems and very few
results are known in this direction. It is well-known that elliptic islands can not be destroyed by small
perturbations of the system. Let us illustrate this situation by the following statement. It also describes
the situation that can occur on the boundary of Anosov maps.

Theorem 10 (see [37, 38]). Let fα(x, y) = (x′, y′) be a one-parameter family of diffeomor-
phisms of the 2-torus given by

x′ = x + y + hα(x) (mod 2π),

y′ = y + hα(x) (mod 2π),

where hα(x) = x− (1 + α) sin x. Then for −1 < α < 0 the map f is Anosov, for α = 0 it has nonzero
Lyapunov exponents almost everywhere and for sufficiently small positive α it has an elliptic
island outside of which f has nonzero Lyapunov exponents almost everywhere.

Another type of coexistence phenomenon is the presence of a Cantor set of codimension one invariant
tori of positive volume; on each such torus the diffeomorphism is C1 conjugate to a diophantine
translation; all of the Lyapunov exponents are zero on the invariant tori. This picture is well-known
in KAM theory and is shown to be present on any compact smooth manifold of dimension � 2 for
an open set of volume-preserving Cr diffeomorphisms of M for any sufficiently large r (see [39–42]).
It is however not known whether the Lyapunov exponents outside this set of invariant tori are nonzero
almost everywhere. We present a result that shows that this may be the case.

Theorem 11 (see [43]). There exists a volume-preserving C∞ diffeomorphism f of a compact
smooth Riemannian manifold M , which is arbitrarily close to the identity map, such that

1. f is ergodic on an open and dense subset U ⊂ M ;

2. Lyapunov exponents of f |U are nonzero almost everywhere in U ;

3. the complement C = M \ U has positive volume and is a Cantor set of invariant tori;

4. f = Id on C and the Lyapunov exponents of f |C are all zero.

We outline the proof of this result. Let A be an Anosov automorphism of the 2-torus X = T 2.
Consider the special flow f t over A with roof function H(x) = 1, acting on the manifold N = {(x, t) :
x ∈ X, t ∈ [0, 1]}/ ∼ where “∼” is the identification (x, 1) = (Ax, 0).

To construct the desired map we choose:
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(1) a Cantor set C ⊂ Y = T 2 of positive volume such that the complement U = Y \ C is connected;

(2) an open set U0 such that U0 ⊂ U ;

(3) a C∞ function φ supported in U0;

Set M = N × Y and consider the map T : M → M given by

T ((x, t), y) = (fφ(y)(x, t), y).

It is a volume-preserving, nonuniformly partially hyperbolic map with one-dimensional stable, one-
dimensional unstable and three-dimensional central directions.

We further choose:

(4) a sequence of open connected subsets Un ⊂ U such that U0 ⊂ U0 ⊂ U1, Un ⊂ Un+1

and
⋃

n�1 Un = U ;

(5) a sequence of numbers εn, which tend to zero sufficiently fast.

The proof then goes by constructing a sequence of diffeomorphisms Pn : M → M , P0 = T for which

(6) ||Pn − Pn−1||Cn < εn;

(7) the set N × Un is invariant under Pn and Pn = T outside N × Un;

(8) each diffeomorphism Pn is nonuniformly partially hyperbolic on U ; in particular, it possesses two
transversal stable and unstable foliations of N × U ; furthermore, it has the accessibility property
on N × Un via these foliations;

(9) Pn|U is ergodic and has nonzero Lyapunov exponents for almost every x ∈ U .

The two most crucial parts in constructing the diffeomorphisms Pn are: (1) removing three zero
Lyapunov exponents of the map T (one in the flow direction and two in the direction of the torus
Y ) and (2) ensuring accessibility of Pn within the invariant set N × Un. To achieve this one can
modify methods in [30, 32, 44] and adjust them to this situation. One can now show that the map
f = limn→∞ Pn has all the desired properties.

8. OPEN SETS OF DIFFEOMORPHISMS OF THE TORUS
WITH NONZERO LYAPUNOV EXPONENTS

We present a result that illustrates the above mentioned two conjectures in the particular case
of multi-dimensional tori. Let f be an Anosov diffeomorphism of the torus T n. Consider the direct
product map F = (f, Id) : T n × S1 → T n × S1. The map F is uniformly partially hyperbolic and
preserves volume but is not ergodic. We consider a small perturbation G of F , which preserves volume.
Note that

1. G is uniformly partially hyperbolic with an invariant splitting

TxT n+1 = Es
G(x) ⊕ Ec

G(x) ⊕ Eu
G(x),

where Ec
G is the one-dimensional central distribution;

2. the distributions Es
G and Eu

G are integrable and their integral manifolds form G-invariant folia-
tions W s

G and W u
G of T n+1; these foliations are continuous;

3. the distribution Ec
G is integrable and its integral manifolds form a G-invariant foliation W c

G

of T n+1 whose global leaves are diffeomorphic to circles (see [45]).
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Theorem 12 (see [44, 46–48]). There is a open set of perturbations G of F in the C1 topology
of T n+1 such that G is of class C2, preserves volume, ergodic (in fact, it is Bernoulli) and has
negative Lyapunov exponents in the central direction EG almost everywhere.

Corollary 1. There is an open set in the space Diff2(T n+1,m), which consists of non-Anosov
ergodic diffeomorphisms with nonzero Lyapunov exponents.

It is shown in [48] that in the case of the 3-torus the central foliation W c
G for the map G constructed

above has the following “pathological” property: there is a set E ⊂ M of full measure such that E
intersects almost every leaf of the central foliation at one point — the remarkable phenomenon known
as “Fubini’s nightmare” (see [49] for more information and further references). This phenomenon
is robust as it holds for any sufficiently small perturbation of the map G.

9. THE GENERICITY PROBLEM: FAMILIES OF MAPS

We present a different approach to the genericity problem that is inspired by recent study of the
Hénon family of maps (see [50–55]). Namely, given a one-parameter family of C2 diffeomorphisms fa,
a ∈ [α, β] of a compact smooth manifold M there exists a set A ⊂ [α, β] of positive Lebesgue measure
such that for every a ∈ A the diffeomorphism fa has nonzero Lyapunov exponents almost everywhere
(and indeed, is ergodic). Here are the three examples where genericity in this sense is expected:

1) The standard (Chirikov–Taylor) family of maps of the 2-torus given by Tα(x, y) = (x′, y′) where

x′ = x + α sin(2πy)(mod 1),

y′ = y + x′(mod 1)

(see [56, 57]).

2) A family of maps fα of the 2-torus such that f0 is the Katok map.

3) A family of automorphism of real K3 surfaces (see [58]).

Each of these three examples represents a wonderful and quite difficult open problem in the modern
theory of dynamical systems whose solutions will lead to a deeper understanding of the nature of chaos
and of possible mechanisms of appearing chaotic motions in pure deterministic dynamical systems.
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